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A Bloom filter is a very compact data structure that supports approximate membership queries
on a set, allowing false positives.

We propose several new variants of Bloom filters and replacements with similar functionality.
All of them have a better cache-efficiency and need less hash bits than regular Bloom filters.

Some use SIMD functionality, while the others provide an even better space efficiency. As a

consequence, we get a more flexible trade-off between false positive rate, space-efficiency, cache-
efficiency, hash-efficiency, and computational effort. We analyze the efficiency of Bloom filters and

the proposed replacements in detail, in terms of the false positive rate, the number of expected

cache-misses, and the number of required hash bits. We also describe and experimentally evaluate
the performance of highly-tuned implementations. For many settings, our alternatives perform

better than the methods proposed so far.

Categories and Subject Descriptors: E.2.7 [Data Storage Representations]: Hash-table rep-

resentations; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Al-

gorithms and Problems—Sorting; Searching; F.2.3 [Analysis of Algorithms and Problem
Complexity]: Tradeoffs between Complexity Measures

General Terms: Algorithms, Experimentation, Measurement

Additional Key Words and Phrases: Bloom filter, false positives, algorithm engineering

1. INTRODUCTION

The term Bloom filter names a data structure that supports membership queries
on a set of elements. It was introduced already in 1970 by Burton Bloom [1970].
It differs from ordinary dictionary data structures, as the result of a membership
query might be “true” although the element is not actually contained in the set.
Since the data structure is randomized by using hash functions, reporting a false
positive occurs with a certain probability, called the false positive rate (FPR). This
impreciseness also makes it impossible to remove an element from a Bloom filter.
The advantage of a Bloom filter over the established dictionary structures is space
efficiency. A Bloom filter needs only a constant number of bits per (prospective)
element, while keeping the FPR constant, independent of the size of the elements’
universe.

The false positives can often be compensated for by recalculating or retrans-
mitting data. Bloom filters have applications in the fields of databases, network
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applications [Broder and Mitzenmacher 2004] and model checking [Dillinger and
Manolios 2004a; 2004b]. The requirements on the Bloom filter and the way of
using it differ greatly among these fields of applications.

1.1 Paper Outline.

In Section 2 we review “standard” Bloom filters which are based on setting k bits
in a bit array which are determined by k hash functions. Section 3 introduces and
analyzes a family of cache-efficient variants of standard Bloom filters. There are
two main ideas here: concentrate the k bits in one (or only few) cache blocks and
precompute random bit patterns in order to save both hash bits and access time.
While these Bloom filter variants improve execution time at the cost of slightly
increased FPR, the filters presented in Section 4 save space by engineering practical
variants of the theoretically space optimal Bloom filter replacements proposed by
Path et al. [2005]. The basic idea is a compressed representation of a Bloom filter
with k = 1. Our main algorithmic contribution is the observation that a technique
from information retrieval fits perfectly here: Since the distances between set bits
are geometrically distributed, Golomb codes yield almost optimal space [Moffat
and Turpin 2002]. After giving some hints on the implementation in Section 5,
we present an experimental evaluation in Section 6. We conclude our paper in
Section 7.

2. STANDARD BLOOM FILTERS WITH VARIANTS

The original Bloom filter for representing a set of at most n elements consists of a
bit vector of length m. Let c := m/n be the bits-per-element rate. Initially, all bits
are set to 0. To insert an element e into the filter, k bits are set in the Bloom filter
according to the evaluations of k independent hash functions h1(e), . . . , hk(e). The
membership query consists of testing all those bits for the query element. If all bits
are set, the element is likely to be contained in the set, otherwise, it is surely not
contained.

For a fixed number of contained elements and fixed space, the FPR is lowest
possible if the probability of a bit being set is as close as possible to 1

2 . One can easily
show that it is optimal to choose the integer k close to ln 2 · c = ln 2 · m

n ≈ 0.693m
n

(try out whether rounding ln 2 · c up or down is better).
The probability that a bit has remained 0 after inserting n elements, is1

p′ :=
(

1− 1
m

)kn
i=kn
≈ lim

i→∞

(
1− kn

mi

)i

= e−kn/m . (1)

The false positive rate for a standard Bloom filter (std) is

fstd(m,n, k) = (1− p′)k =

(
1−

(
1− 1

m

)kn
)k

≈
(

1− e−kn/m
)k !
≈ 1

2k
(2)

for the optimal k. The detailed calculation can be found in Broder and Mitzen-
macher’s survey paper [2004].

1We assume throughout the paper that the hash functions are perfectly random.
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2.1 Classification.

The original Bloom filter can be termed a semi-dynamic data structure, since it
does not support deletions2. Variants that do support deletion are called dynamic.
The other extreme is a static filter where not even additions to the set may occur
after construction.

2.2 Existing Variants for Different Requirements.

A variant called Counting Bloom Filters [Fan et al. 2000] allows deletion of elements
from the Bloom filter by using (small) counters instead of a single bit at every
position. This basic technique is also used by [Pagh et al. 2005] in combination with
a space-efficient multiset data structure, to yield an asymptotically space-optimal
data structure.

2.3 More Related Work.

In [Kirsch and Mitzenmacher 2006], it is shown that the prerequisite of independent
hash functions can be weakened. The hash values can also be computed from a
linear combination of two hash functions h1(e) and h2(e). This trick does not
worsen the false positive rates in practice.

Lumetta and Mitzenmacher [2006] improve the FPR of Bloom filters by choosing
between two hash function families. However, this needs more hashing and causes
more cache faults, and hence is contrary to our approaches.

Buhrman, Miltersen and Jaikumar [2002] consider dictionary data structures
that answer queries using a single bit probe and with an error probability of ε.
However, note that this data structure is quite different from the bitvector based
Bloom filter replacement we consider in Section 4. Our data structure needs much
less memory whereas the one in [Buhrman et al. 2002] has the advantage that the
error probability can be made arbitrarily small using repeated calls.

3. BLOCKED BLOOM FILTERS

We will now analyze the cache efficiency of a standard Bloom filter, which we
assume to be much larger than the cache. For negative queries, only less than two
cache misses are generated, on the average. This is because each bit is set with
probability q = 1/2, when choosing the optimal k, and the program will return false
as soon as an unset bit is found. This cannot be improved much, since at most
one cache fault is needed for accessing some randomly specified cell in the data
structure. Thus, standard Bloom filters are cache-efficient for negative queries.

For positive queries (both false or true) and insertions, however, standard Bloom
filters are cache-inefficient since k cache misses are generated.

In this section, we present a generally cache-efficient variant called blocked Bloom
filter (blo). It consists of a sequence of b comparatively small standard Bloom filters
(Bloom filter blocks), each of which fits into one cache-line. Nowadays, a common
cache line size is 64 bytes = 512 bits. For best performance, those small filters are
stored cache-line-aligned. For each potential element, the first hash value selects
the Bloom filter block to be used. Additional hash values are then used to set or

2We define a deletion as having the same effect as if the element was never inserted.
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Table I. Increasing the space for a blocked Bloom filter to compensate the FPR (B=512).

c 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
c’ 6 7 8 9 10 11 12 13 14 16 17 18 20 21 23
+% 20 16 14 12 11 10 9 8 7 14 13 12 17 16 21

c 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
c’ 25 26 28 30 32 35 38 40 44 48 51 58 64 74 90
+% 25 23 27 30 33 40 46 48 57 65 70 87 100 124 165

test bits as usual, but only inside this one block. A blocked Bloom filter therefore
only needs one cache miss for every operation. In the setting of an external memory
Bloom filter, the idea of blocking was already suggested in [Manber and Wu 1994],
where the increase of the FPR was found negligible for the test case there (k = 5),
and no further analysis was done. The blocked Bloom filter scheme differs from
the partition schemes mentioned in [Kirsch and Mitzenmacher 2006, Section 4.1],
where each bit is inserted into a different block.

Let primed identifiers refer to the “local” parameters of the Bloom filter block.
At first glance, blocked Bloom filters should have the same FPR as standard Bloom
filters of the same size since the FPR in Equation (2) only depends on k and n/m,
k equals k′, and the expected value of n′/m′ is n/m. However, we are dealing
with small values of m so that the approximation is not perfect. More importantly,
n′ is a random variable that fluctuates from block to block. Some blocks will be
overloaded and others will be underloaded. The net effect is not clear at first glance.
The occupancies of the blocks follow a binomial distribution B(n, 1/b) that can be
closely approximated by a Poisson distribution with parameter n/b = B/c since n
is usually large, and B/c is a small constant. An advantage of this approximation
is that it is independent of the specific value of n. For the overall FPR of a blocked
Bloom filter with local FPR finner(B, i, k) we get the following infinite but quickly
converging sum:

fblo(B, c, k) :=
∞∑

i=0

PoissonB/c(i) · finner(B, i, k) (3)

For a blocked Bloom filter using the typical value c = 8 bits per element, the
decline in accuracy is not particularly bad; the FPR is 0.0231 instead of 0.0215
for B = 512 bits. By increasing c by one, we can (over-)compensate for that. For
larger c, the effect of the non-uniform distribution can be diminished by choosing
a smaller k than otherwise optimal. Still, for c = 20 and k = 14, the FPR almost
triples: it rises from 0.0000671 to 0.000194, which might not be acceptable in
certain applications. Thus, we have to increase c to 24. The numerically computed
results for many values of c are shown in Table I. These values are impractical for
c > 28, since more than 50% additional memory must be used to compensate for
the blocking. However, for c < 20, the additional memory required is only 20%.
This can be acceptable, and often even comes with an improvement to the FPR,
in the end. For c > 34, the blocked Bloom filter with B = 512 cannot compensate
the FPR any more, for a reasonable number of bits per element.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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3.1 Bit Patterns (pat).

A cache miss is usually quite costly in terms of execution time. However, the advan-
tage in performance by saving cache misses can still be eaten up if the computation
is too complex. For the blocked Bloom filters, we still have to set or test k bits for
every insertion or positive query. On the other hand, modern processors handle up
to 128 bits in a SIMD instruction. The latest models even have two SIMD units.
Hence, a complete cache-line can be handled in only two steps.

To benefit from this functionality, we propose to implement blocked Bloom filters
using precomputed bit patterns. Instead of setting k bits through the evaluation of
k hash functions, a single hash function chooses a precomputed pattern from a table
of random k-bit pattern of width B. In many cases, this table will fit into the cache.
With this solution, only one small (in terms of bits) hash value is needed, and the
operation can be implemented using few SIMD instructions. When transferring
the Bloom filter, the table need not be included explicitly in the data, but can be
reconstructed using the seed value.

The main disadvantage of the bit pattern approach is that two elements may
cause a table collision when they are hashed to the same pattern. This leads to an
increased FPR. If ` is the number of table entries, the collision probability in an n
element Bloom filter block is pcoll(n, `) := 1 −

(
1− 1

`

)n. Hence we can bound the
FPR for one block by

fpat(m,n, k, `) ≤ pcoll(`) + (1− pcoll(`))fstd(m,n, k) . (4)

This local FPR can be plugged into Equation (3) to yield the total FPR. Bit
patterns work well when on the one hand, the pattern table is small enough to fit
into the cache and on the other hand, the table is big enough to ensure that table
collisions do not increase the FPR by too much.

3.2 Multiplexing Patterns.

To refine this idea once more, we can achieve a larger variety of patterns from a
single table by bitwise-or-ing x patterns with an average number of k/x set bits.
Ignoring rounding problems, dependencies, etc.

fpat[x](m,n, k, `) ≈ fpat(m,xn, k/x, `)x . (5)

3.3 Multi-Blocking.

One more variant that helps improving the FPR, is called multi-blocking. We allow
the query operation to access X Bloom filters blocks, setting or testing k/X bits
respectively in each block. (When k is not divisible by X, we set an extra bit in
the first k mod X blocks.) Multi-blocking performs better than just increasing the
block size to XB, since more variety is introduced this way. If we divide the set bits
among several blocks, the expected number of 1 bits per block remains the same.
However, only k/X bits are considered in each participating block, when accessing
an element. Thus, we have to generalize Equation (2):

fstd[X](m,n, k) =

(
1−

(
1− 1

m

)kn/X
)k

(6)
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Fig. 1. Comparing the empirical FPR to the theoretically computed one, for some variants. The

lines represent the theoretical, the points indicate the experimental results.

We get an estimate for the total FPR of

fblo[X](B, c, k) :=
∞∑

i=0

PoissonXB/c(i) · fstd[X](B, i/X, k)X (7)

This can be adapted to bit patterns as before. The multiplexing and the multi-
blocking factor will be denoted by appending them to either variant, i. e. blo[X] and
pat[x,X] respectively.

3.4 Combinations.

Using the formulas presented, all combinations of the variants presented here can
be theoretically analyzed. Although the calculations make simplifying assumptions,
mainly through disregarding dependencies, they match the experimental results
closely, as shown in Figure 1. The differences are very small, and only appear for
large c, where random noise in the experimental values comes into play.

Hash Complexity

Besides the cost for memory access, Bloom filters incur a cost for evaluating hash
functions. Since the time needed for this is very application dependent, we choose
to compare the different algorithms based on the number of hash bits needed for a
filter access. Table II summarizes the results (the ch and gcs methods are discussed
in Section 4).

Exemplary values for m = 800, 000, 000 are shown in Figure 2. The values follow
the theoretical computation in Table II. Obviously, the proposed variants perform
better than the standard Bloom filters, for a reasonable choice of c.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Cache-, Hash- and Space-Efficient Bloom Filters · 7

Table II. Number of hash bits used by the various variants. f is the desired FPR, n the number

of elements, and m the available space, B the block size, and ` the length of the pattern table.
Throughout this paper, log x stands for log2 x.

Operation Insert / Positive Query Negative Query

std k log m 2 log m (expected)

blo[X] X log(m/B) + k log B log(m/B) + 2 log B

pat[x, X] X(log(m/B) + x log `) log(m/B) + x log `

ch log n/f log n/f

gcs log n/f log n/f
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Fig. 2. Number of hash bits used against the FPR.

4. SPACE-EFFICIENT BLOOM FILTER REPLACEMENTS

In the previous section, we have proposed methods for making Bloom filters produce
less cache faults and use less hash bits. The aim was to improve the execution time,
while at the same time, sacrificing FPR and/or space efficiency. In this section, we
describe Bloom filters with near optimal space consumption that are also cache-
efficient. We pay for this with a trade-off between execution time and an additive
term in the space requirement.

Our basic solution is also static, i. e. the data structure must be constructed in a
preprocessing step, with all elements given, before any query can be posed. At the
end of this section we outline how the data structure can be dynamized.

The original Bloom filters are space-efficient, but not space-optimal [Pagh et al.
2005]. When ignoring membership query time, one could just store one hash value
in the range {1, . . . , n/f} to obtain an FPR of f . This would cost only log

(
n/f
n

)
≈

n log e
f bits instead of n

ln 2 log(1/f) bits. Hence, a traditional Bloom filter needs
about 1/ ln 2 ≈ 1.44 times as much space, even worse by an additive constant when

ACM Journal Name, Vol. V, No. N, Month 20YY.
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compared to the information-theoretic minimum, n log(1/f) bits. This amount of
extra memory can be saved by sacrificing some access time. Pagh et al. [2005]
use a asymptotically space-optimal hash data structure invented by Cleary [1984]
for storing just those hash values. Let this approach be termed CH filter (ch)
here. However, to guarantee expected constant membership query time, a constant
number of bits must be spent additionally for each contained element. Those bits
comprise a structure that gives hints to find the desired element quickly. The more
bits are provided, the faster the data structures will work. Although the number
of bits is independent of n, and more importantly, of the FPR, this eats up most of
the savings achieved, for reasonably small values of c. Another point is that a hash
data structure should never get close to full, i. e. there must be some maximal load
α, which in turn increases memory usage. Summarizing this, access time must be
traded off with space efficiency again, but this time with the ability to get arbitrarily
close to the theoretical optimum, asymptotically.

Our own solution proposed here is based on an approach used in search engines
to store sorted lists of integers [Sanders and Transier 2007]. Imagine a simple
Bloom filter with k = 1, i. e. a hashed bitmap, yielding an FPR of 1/c. This
bitmap can be greatly compressed, as the 1 bits are sparse.3 We do not directly
compress the bitmap, but the sorted sequence of hash values in the range {0, . . . , nc}
for all the contained elements. These values are uniformly distributed, therefore,
the differences between two successive values are (approximately) geometrically
distributed with p = 1/c. For a geometric distribution, Golomb coding [Moffat
and Turpin 2002, p. 36] is a minimal-redundancy code, i. e. by choosing the right
parameter, we lose only at most half a bit per element, compared to the information-
theoretic optimum.

However, this compressed sequence still does not allow any random-access, since
the Golomb codes have value-dependent sizes. Hence, we have to augment it with
a index data structure so we can seek to a place near the desired location quickly.
Therefore, we divide the number range of the hash function into parts of equal size
I. In addition, for each of these blocks, a bit-accurate pointer to the beginning of
the subsequence that contains the corresponding values, is stored. So there is a
trade-off once again: For a small search time we want a small I, but large I are
good for saving space.

This data structure, termed Golomb-Compressed Sequence (gcs) is static, in con-
trast to the compact-hash approach, i. e., all hash values (and thus all elements in
the set) must be known beforehand.

4.1 Dynamization of gcs

We can support insertions by maintaining a small dynamic hash table Ti for recently
inserted elements. It suffices if Ti stores the bit positions for the main table. When
Ti becomes too big, we empty it by reconstructing the main table. With a bit
of caution we can even support deletion using a deletion buffer Td. This works if
both the main table and Td store multisets of bit positions. This can be done very

3In [Mitzenmacher 2001] this is exploited using arithmetic coding. Our approach is related but
more directly uses the structure of the problem and directly leads to an approach that allows

random access.
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space-efficiently in the main table. We just need to provide a code word for the
distance 0. Since this does not significantly increase the lengths of the other code
words and since there are only few collisions, the resulting space and time overhead
is small.

5. IMPLEMENTATION ASPECTS

Blocked Bloom filters with bit patterns profit from storing the Bloom filter in
negated form—a membership query then reduces to testing whether the bitwise-
and of the pattern and the negated filter block is zero. Insertion amounts to a
bitwise-and of the negated pattern and the negated filter block.

To scale the hash values to the appropriate range, we use floating-point mul-
tiplication and rounding instead of division with remainder. Our measurements
indicate that this is crucial for performance.

We implemented all algorithms in a library-style way that makes them easy to
use in real applications. This includes easy configuration of all tuning parameters,
most of them allowed to be changed at runtime. Through generic programming, we
are able to plug in arbitrary data types and hash functions, without any runtime
overhead. The code can be obtained from the authors.

With all those details described, we can state that everything possible was done
to achieve best practical performance for all of the contestants, thus guaranteeing
a fair comparison.

Assume we have two bit vectors, the pattern p, and the filter f . We want to
tests whether all 1 bits in p are also set in f . All operations in the following are
supposed to be executed bitwise on the vectors.

((p⇒ f) = 1)⇔ (p ∧ f = p)⇔ ((p ∧ f)⊕ p = 0) (8)

Now, keep the filter in an inverted fashion, always. Then, there is only one binary
operation and one comparison against 0 necessary.

((p⇒ f) = 1)⇔ (¬p ∨ f = 1)⇔ (p ∧ ¬f = 0) (9)

For the insert operation, we only need one more binary inversion. Overall, since an
inversion is cheaper than a binary operation, we use the inverted version.

6. EXPERIMENTAL EVALUATION

We evaluate our implementations using one core of an Intel Xeon 5140 dual-core
processor, running at 2.33 GHz with 4 MB of L2-cache using 64 Byte cache lines.
They use the automatic vectorization feature of the Intel C++ Compiler4 to en-
able SIMD operations without hand-written assembler code. We benchmark the
operations

(1) insert an element

(2) query an element contained in the set, returning true

(3) query an element not contained in the set, returning true or false

4Version 9.1.045
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The elements are strings of length 8. They are hashed using one or two variants
of Jenkins’ hash function [Dillinger and Manolios 2004b] with different seeds which
output a total of 64 bits. When even more bits are needed, hash values are generated
as needed using a linear combination of those two hash values, as proposed in [Kirsch
and Mitzenmacher 2006]. In each case, the number of elements n is chosen so that
the filter data structure has size 95 MB. After inserting n elements, querying for the
same set is performed. Additional n elements are queried for in the second step.
This made it possible to measure the running times for both positive and negative
queries. The cache-line size is 64 bytes, so we chose B = 512. For the pattern-based
filters, the table size is set to the full 4 MB, resulting in ` = 64K.

To make the comparison fair, we also include variants of the standard Bloom
filter that for a given c use a k value just large enough to ensure an FPR at least
as good as blo[1] (std[1]) and blo[2] (std[2]) respectively.

Figures 3 and 4 show running times for the positive and negative queries as well
as the filter size, for c from 1 to 34. The insertion times are omitted since they are
very similar to the times for positive queries.

As stated before, there is not much improvement to expect for negative queries,
since their detection is already quite cache-efficient for the original Bloom filter.
Also, they do not use many hash bits. For both positive queries and insertions, the
blocked Bloom Filter variants outperform the original Bloom filter, in particular
for low FPRs, i. e. high reliability. The maximum speedup factor is close to 4, using
32% more memory than the standard variant. However, the speedup is actually
smaller than one would expect from the difference in cache misses (see Appendix A).
Apparently, the system can hide cache latencies using prefetching. A system based
on a different architecture shows similar results (see Appendix B).

The normal pattern variants are only slightly faster than the regular blocked
Bloom filter. One reason is that we use very cheap hash functions. But there is
another cause: When the pattern table occupies all of the cache, almost every filter
access evicts a pattern from the cache whose next access will cause a cache fault.
Reducing the table size (slowly) reduces this problem. The normal pattern variant
also does not reach the area of very large FPRs. For c = 34, the FPR is limited by
the probability of table collisions, about 512/34/64K ≈ 2.310−4. The multiplexing
versions are able to overcome this limitation, but need more computational effort.

Regarding the single-blocking variants, for positives and insertions, pat[1, 1] per-
forms best for rather high FPRs, while pat[2, 1] extends this behavior to smaller
FPRs, using 2-fold multiplexing.

Regarding the two-blocking variants, for positives and insertions, pat[1, 2] per-
forms best, being up to almost twice as fast as any standard variant, for a low
FPRs. It this range, pat[1, 2] can also compete for negative queries. When an even
smaller FPR is requested, blo[2] should be used, which is only marginally slower
than pat[1, 2].

We performed a similar test for the space-efficient replacements. The ch data
structure used 3 additional bits per entry, while varying the load factor from 0.90
to 0.99.

The results are stated in Figure 5, comparing to the standard Bloom filter for c =
40, all featuring the same FPR. For this FPR, the lower bound in space for storing
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 4. Execution times for positive (top) and negative (bottom) queries for the variants accessing

two blocks.

the hash values is − log 4.5110−9 + log e = 29.14 bits per element. The minimum
space requirement in this experiment for gcs is in fact 29.14 bits (I →∞), reaching
the optimum, while for ch, it is 30.80 bits (α → 1 and omitting one redundant
helper bit per entry). For gcs, the index data structure can be easily and flexibly
rebuilt after compact transmission, but for ch, the whole filter must be rebuilt to
achieve acceptable execution times.
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equivalent to a standard Bloom filter with c = 40 and optimal k.

As we can see, the static gcs implementation provides excellent performance when
the memory limitations are tight. If more space is available, Compact hash (ch)
gives better query times, but collapses in terms of insertion performance.

7. CONCLUSION

Which variant or replacement of a Bloom filter works best depends on the applica-
tion a lot. Standard Bloom filters are still a good choice in many cases. They are
particularly efficient for negative queries. Even insertions and positive queries work
better than one might think because modern hardware can mitigate cache faults by
overlapping multiple memory accesses and because a reduction of k below the “opti-
mal” value brings considerable speedup at moderate increase in space consumption
or FPR. Blocked Bloom filters, possibly together with precomputed bit patterns,
can mean a significant speedup if insertions and positive queries are important op-
erations or when hash bits are expensive. Multiplexing and multiblocking Bloom
filters become important when a very low FPR is required. Space-efficient Bloom
filter replacements are particularly interesting when one wants to reduce communi-
cation volume for transferring the filter. Somewhat surprisingly, the price one pays
in terms of access time is small or even negative if one uses our implementation
based on bucketed Golomb coding. Recently, Patrascu [2008] has developed a so-
phisticated approach that gives a much better asymptotic tradeoff between access
time and space overhead for data structures such as our bucketed Golomb coding.
It might be interesting to see whether such data structures give good performance
in practice.

If internal space efficiency is less important than access time and saving commu-
nication volume, one could accelerate our implementation further by using Golomb
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coding only for the communication and by using a faster representation internally.
We believe that, independent of the particular results, our paper is also instruc-

tive as a case study in algorithm engineering and its methodology: Modeling both
the machine (cache, prefetching, SIMD instructions) and the application (operation
mix, difficulty of hashing) are very important here. The paper contains nontrivial
components with respect to design, analysis, implementation, experimental evalua-
tion, and algorithm library design. In particular, the analysis is of a “nonstandard”
type, i. e., analysis only seems tractable with simplifying assumptions that are then
validated experimentally.
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Table III. Number of cache misses (in millions) for various algorithms, operations, and table

sizes.

Table Size / Operation
64 KB 2048 KB 4096 KB

Algorithm insert / pos neg insert / pos neg insert / pos neg

std 539 112 539 112 539 112

blo[1] 39 39 39 39 39 38

blo[2] 77 39 77 39 77 39

pat[1,1] 39 39 55 55 64 64

pat[1,2] 77 41 109 55 128 65

pat[2,1] 39 39 55 55 64 64

pat[2,2] 77 41 109 55 128 65

pat[3,1] 39 39 55 55 64 64

pat[3,2] 77 41 109 55 128 65

Appendix

A. CACHE-EFFICIENCY EVALUATION

Table III lists the number of cache faults that are triggered by executing the ex-
periment. We used a table of size either 64 KB, 2048 KB or 4096 KB. For c = 20,
we inserted and queried 40 000 000 elements, respectively. blo[1] causes about one
cache miss per operation, which is quite accurately reflected by the numbers. For
a insertion or positively answered query, the number of cache faults is reduced by
a factor of 13.96 compared to std. This is also just as expected, since k = 14.
However, Figure 3 indicates that for c = 20, blo[1] is only about 3 times faster than
std. Part of the explanation is that the number of hash bits needed by the two
schemes only differs by a factor of about three. However, since the execution time
is still dominated by the memory access times, an important part of the explanation
seems to be that the compiler schedules memory accesses (or prefetches) already
in the loop iteration before the actual use of the data. Thus, cache latency can be
hidden behind other operations. This prefetching behavior also explains why there
are about 2.9 cache faults per negative query of std although the analysis predicts
only two. Apparently, once the query algorithm found a zero bit, one more memory
access has already been issued.

For the two-blocking variants, the number of cache misses obviously doubles.
When using patterns, the pattern table and the accessed blocks fight for the cache.
When the table is as large as the cache, the numbers go up by a factor of 1.7,
compared to a table of negligible size. This surprises, since the table entries should
clearly dominate the cache sets. Because of the 8-way set-associative cache organi-
zation, we would expect only every 8th table access to fail, instead of the measured
70%. Apparently, the cache does not follow a strict LRU policy. Still, the number
of cache misses is far lower than for the standard variants. This fighting for the
cache could be avoided by using special compiler instructions to bypass the cache
when reading or writing blocks.
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B. RESULTS FOR AMD PLATFORM

To ensure that our results are not specific for a particular processor architecture,
we have repeated the tests from Figures 3 and 4 on an AMD Opteron 844 machine
with 1 MB cache, running at 1.8 GHz (see Figures 6 and 7). The table size was
reduced to 1 MB, accordingly.

The speed improvements for this platform are even slightly better, the maximum
speedup is about 5 instead of 4. However, the absolute runing times are worse,
because of the system’s worse overall performance. The pat[1,1] filter does not
reach as low FPRs as before, because of the shorter pattern table.
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